Background: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear.
Methods: Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy.
Results: LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects.
Conclusion: LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664664 | PMC |
http://dx.doi.org/10.1186/s12967-023-04702-6 | DOI Listing |
Mol Cancer Ther
November 2024
Cancer Research Horizons, Cambridge, United Kingdom.
Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling.
View Article and Find Full Text PDFMatrix Biol
June 2024
Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile. Electronic address:
Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models.
View Article and Find Full Text PDFJ Transl Med
November 2023
Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
Background: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFReproduction
November 2023
Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.
In Brief: Autophagy is important for trophoblast cells at the maternal-fetal interface during early pregnancy. This study suggests that trophoblast cells can promote the autophagy under a regulation of the LPA/LPAR 1-NHE1 axis.
Abstract: The autophagy of trophoblasts is necessary for developing and maintaining a healthy pregnancy.
Crit Rev Eukaryot Gene Expr
July 2021
Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang District, Beijing, China.
Lysophosphatidic acid (LPA) is a bioactive lipid component of ovarian cancer activating factor, which is present at a high concentration in the ascitic fluid and plasma of patients with ovarian cancer. A group of six lysophosphatidic acid receptors (LPARs), LPAR1 through LPAR6, which belong to the G protein-coupled receptor superfamily (GPCR), mediate cellular activities of LPA and activates a series of downstream molecules and cellular responses, including biological and pathological effects. LPARs are widely expressed in normal ovary, benign tumor, and ovarian cancer tissues and cancer cell lines with a broad range of levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!