A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of inorganic nanoparticles on dental materials' mechanical properties. A narrative review. | LitMetric

Influence of inorganic nanoparticles on dental materials' mechanical properties. A narrative review.

BMC Oral Health

Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.

Published: November 2023

Inorganic nanoparticles have been widely incorporated in conventional dental materials to help in improving their properties. The literature has shown that incorporating nanoparticles in dental materials in different specialties could have a positive effect on reinforcing the mechanical properties of those materials; however, there was no consensus on the effectiveness of using nanoparticles in enhancing the mechanical properties of dental materials, due to the variety of the properties of nanoparticles itself and their effect on the mechanical properties. This article attempted to analytically review all the studies that assessed the effect of different types of inorganic nanoparticles on the most commonly used dental materials in dental specialties such as polymethyl methacrylate, glass ionomer cement, resin composite, resin adhesive, orthodontic adhesive, and endodontic sealer. The results had shown that those inorganic nanoparticles demonstrated positive potential in improving those mechanical properties in most of the dental materials studied. That potential was attributed to the ultra-small sizes and unique physical and chemical qualities that those inorganic nanoparticles possess, together with the significant surface area to volume ratio. It was concluded from this comprehensive analysis that while a definitive recommendation cannot be provided due to the variety of nanoparticle types, shapes, and incorporated dental material, the consensus suggests using nanoparticles in low concentrations less than 1% by weight along with a silane coupling agent to minimize agglomeration issues and benefit from their properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662115PMC
http://dx.doi.org/10.1186/s12903-023-03652-1DOI Listing

Publication Analysis

Top Keywords

inorganic nanoparticles
20
mechanical properties
20
dental materials
20
nanoparticles
9
dental
8
nanoparticles dental
8
properties
8
properties dental
8
materials
6
mechanical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!