Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fusarium head blight (FHB) is a critical fungal disease causes serious grain yield losses and mycotoxin contaminations. Currently, utilization of chemical fungicides is the main control method which has led to serious resistance. Development of novel synergist is an important strategy to reduce the usage of chemical fungicides and postpone the development of resistance, while natural components are interesting resources. In this study, the synergistic effect of Taxodium 'zhongshansha' essential oil (TZEO) was determined and the best synergistic ratio (SR) of 3.96 in laboratory which was observed when the weight ratio of TZEO and prothioconazole was 1 : 1 with the corresponding EC (half maximal effective concentration) value of Fusarium graminearum was 0.280 mg L. Subsequently, an increase of 6.31% on the control effect to FHB index in field test was observed when compared to the treatment with prothioconazole alone, though there was no significant difference between these treatments. Furthermore, we established an effective method to detect the mycotoxin contaminations in wheat grain with the limits of quantifications (LOQs) value of 5 µg kg (DON, ZEN, 3-DON, and 15-DON) and 1 µg kg (OTA) and the contents were less to the maximum residue limit (MRL) values. It was also shown that the application of 20% TZEO EW led to a 20% reduction in the use of prothioconazole, which was calculated based on the control effect values of 86.41% and 90.20% between the treatments of 30% prothioconazole OD (225 g a.i ha, recommend dosage) and 30% prothioconazole OD (180 g a.i ha) + 20% TZEO EW (225 mL ha), significantly. The initial residue of prothioconazole and prothioconazole-desthio was increased in the treatment with TZEO, which may play an important role in the synergistic effect on FHB. Moreover, none of the treatments posed a prothioconazole residue risk in the wheat grain and the environment. In addition, the essential oil has no any negative influence on wheat growth, which was revealed by a study of the chlorophyll content. These results provide an important botanical synergist for use with prothioconazole to control Fusarium head blight, and in-depth study to the synergistic mechanism of this oil is necessary in our future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663447 | PMC |
http://dx.doi.org/10.1038/s41598-023-47797-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!