This paper deals with the second quantization of interacting relativistic Fermionic and Bosonic fields in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. The corresponding Feynman diagrams and a new [Formula: see text]-matrix theory is developed. In the special case of proton-proton Møller scattering via an exchange of a neutral meson, the explicit second order element [Formula: see text] is deduced. In the approximation of very low external three-momenta, a new Yukawa potential is explicitly derived from [Formula: see text]. Moreover, it is rigorously proved that this new Yukawa potential is divergence-free. The mass parameter of the exchanged meson may be set to zero to obtain a type of scalar Boson exchange between hypothetical Fermions. This provides a limiting case of a new Coulomb type potential directly from the new singularity free Yukawa potential. A divergence-free Coulomb potential between two Fermions at two discrete points is shown to be proportional to the Euler beta function. Within this relativistic discrete phase space continuous time, a single quanta is shown to occupy the hyper-tori [Formula: see text] where [Formula: see text] is a circle of radius [Formula: see text].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663489 | PMC |
http://dx.doi.org/10.1038/s41598-023-47344-w | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, School of Advanced Sciences, VIT-AP University, Besides AP Secretariate, Amaravati, Andhra Pradesh, 522237, India.
Heavy hexagonal coding is a type of quantum error-correcting coding in which the edges and vertices of a low-degree graph are assigned auxiliary and physical qubits. While many topological code decoders have been presented, it is still difficult to construct the optimal decoder due to leakage errors and qubit collision. Therefore, this research proposes a Re-locative Guided Search optimized self-sparse attention-enabled convolutional Neural Network with Long Short-Term Memory (RlGS2-DCNTM) for performing effective error correction in quantum codes.
View Article and Find Full Text PDFSci Rep
January 2025
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!