Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663560 | PMC |
http://dx.doi.org/10.1038/s41467-023-42701-9 | DOI Listing |
BMC Pregnancy Childbirth
December 2024
Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Delivery mode has been linked to child health, e.g., allergic disease.
View Article and Find Full Text PDFAging Clin Exp Res
December 2024
Department of Geriatric Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Background: Various biomarkers associated with sarcopenia have been identified. However, there is a scarcity of studies exploring and validating biomarkers in individuals with age-related sarcopenia.
Aims: This study aimed to investigate the proteome and identify potential biomarkers for age-related sarcopenia.
Physiol Rep
December 2024
Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China.
Plateau acclimatization involves adaptive changes in the body's neurohumoral regulation and metabolic processes due to hypoxic conditions at high altitudes. This study utilizes Olink targeted proteomics to analyze serum protein expression differences in Han Chinese individuals acclimatized for 6 months-1 year at 4500 and 5300 m altitudes, compared to those residing at sea level. The objective is to elucidate the proteins' roles in tissue and cellular adaptation to hypoxia.
View Article and Find Full Text PDFBioresour Technol
December 2024
CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China. Electronic address:
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, pharmaceuticals, medicine, cosmetics, and the food industries. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, protein, and polysaccharides through mutagenesis and/or stimulation ways, and suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae.
View Article and Find Full Text PDFBiol Psychiatry
December 2024
Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Addiction Institute of Mount Sinai, New York, New York, USA. Electronic address:
Background: Identifying neurobiological targets predictive of the molecular neuropathophysiological signature of human opioid use disorder (OUD) could expedite new treatments. OUD is characterized by dysregulated cognition and goal-directed behavior mediated by the orbitofrontal cortex (OFC), and next-generation sequencing could provide insights regarding novel targets.
Methods: Here, we used machine learning to evaluate human post-mortem OFC RNA-sequencing datasets from heroin-users and controls to identify transcripts predictive of heroin use.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!