Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied. In this study, sake brewing was performed using a series of genome-wide segmental duplicated laboratory S. cerevisiae strains, and the effects of each segmentally duplicated region on sake brewing were investigated. We found that the duplication of specific chromosomal regions affected the production of organic acids and aromatic compounds in sake brewing. As organic acids significantly influence the taste of sake, we focused on the segmental duplication of chromosome II that alters malate levels. Sake yeast Kyokai No. 901 strains with segmental chromosome II duplication were constructed using a polymerase chain reaction-mediated chromosomal duplication method, and sake was brewed using the resultant aneuploid sake yeast strains. The results showed the possibility of developing sake yeast strains exhibiting low malate production without affecting ethanol production capacity. Our study revealed that aneuploidy in yeast alters the brewing properties; in particular, the aneuploidy of chromosome II alters malate production in sake brewing. In conclusion, aneuploidization can be a novel and useful tool to breed sake yeast strains with improved traits, possessing industrial significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2023.10.007 | DOI Listing |
J Biosci Bioeng
January 2025
Industrial Technology Innovation Center of Ibaraki Prefecture, 3781 Nagaoka, Ibaraki-machi, Higashiibaraki-gun, Ibaraki 311-3195, Japan. Electronic address:
Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
December 2024
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Many previous studies have reported various phospholipids and elements that affect sake production; however, it seems to be challenging to investigate individual types in each rice variety due to their high diversity, not to mention their distribution patterns. Since its introduction, mass spectrometry imaging (MSI) has gained attention in various fields as a simple compound visualization technique. The current study highlights the progress of powerful MSI in comprehensively analyzing phospholipids and minerals in brown rice for sake production.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan. Electronic address:
Mycoscience
May 2024
Department of Bioengineering, Nagaoka University of Technology.
Sake is a Japanese alcoholic beverage produced by fermenting steamed rice and (a culture of on steamed rice) with sake yeast, a strain of Sake yeast strains are important for maintaining product quality and process efficiency. In this study, a strain from Muramatsu Park, Gosen City, Niigata Prefecture was isolated using a loop-mediated isothermal amplification (LAMP) assay. The yeast strain was cultured using the mass spore-cell/cell-cell mating method with a sake yeast haploid.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan. Electronic address:
Non-conventional yeasts are increasingly being used in the production of fermented beverages owing to their ability to create unique and high-quality products. The yeast Lachancea thermotolerans is of great industrial significance, particularly in the production of l(+)-lactic acid, which is beneficial for acidifying wine, beer, and potentially sake. To explore its potential in sake brewing, three L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!