A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reinforced dentin remineralization via a novel dual-affinity peptide. | LitMetric

Reinforced dentin remineralization via a novel dual-affinity peptide.

Dent Mater

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

Published: February 2024

Objectives: In light of the constantly flowing saliva, anti-caries remineralization agents are inclined to be taken away. Owing to their limited residence time, the remineralization effect is not as desirable as expected. Hence, our study aimed to synthesize a novel peptide (DGP) with high affinity to both collagen fibrils and hydroxyapatite, and investigated its dentin remineralization efficacy in vitro and anti-caries capability in vivo.

Methods: DGP was synthesized through Fmoc solid-phase reaction. The binding ability and interaction mechanism of DGP to demineralized dentin were investigated. Dentin specimens were demineralized, then treated with DGP and deionized water respectively. The specimens were incubated in artificial saliva and in-vitro remineralization effectiveness was analyzed after 14 days. The rat caries model was established to further scrutinize the in-vivo efficacy of caries prevention.

Results: DGP possesses an enhanced adhesion force of 12.29 ± 1.12 nN to demineralized dentin. The favorable adsorption capacity is ascribed to the stable hydrogen bonds between S2P-101 and ASP-100 of DGP and GLY33 and PRO-16 of collagen fibers. Abundant mineral deposits and remarkable tubule occlusion were observed in the DGP group. DGP-treated dentin obtained notable microhardness recovery and higher mineral content after a 14-day remineralization regimen. DGP also demonstrated potent caries prevention in vivo, with substantially fewer carious lesions and significantly lower Keyes scoring.

Significance: DGP proves to possess a high affinity to demineralized dentin regardless of saliva flowing, thus enhancing remineralization potency significantly in vitro and in vivo, potential for dental caries prevention and combatting initial dentin caries clinically.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2023.11.009DOI Listing

Publication Analysis

Top Keywords

demineralized dentin
12
dgp
9
dentin remineralization
8
high affinity
8
investigated dentin
8
caries prevention
8
remineralization
7
dentin
7
caries
5
reinforced dentin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!