Background: Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD.

Materials And Methods: Firstly, we established AD mice by injecting amyloid-β1-42 (Aβ1-42) solution into the hippocampus. Then, the AD mice received 150 mg/kg/d Cur for 10 consecutive days. The Morris water maze test was conducted to evaluate the cognitive function of the mice by hidden platform training and probe trials. To assess the spatial memory of the mice, spontaneous alternation behavior, the number of crossing the novel arm and the time spent in the novel arm during the Y-maze test was recorded. Hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNAL) assay were performed to assess the pathological damage and apoptosis of brain tissues. The number of damaged neurons was inspected by Nissl staining. Immunohistochemical staining was then performed to detect Aβ1-42 deposition. The levels of tumor necrosis factor-α (TNF-a), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum and hippocampus, the contents of super oxide dismutase (SOD) and malondialdehyde (MDA) in brain tissues were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), RelA (p65) protein expressions and Adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation were tested using Western blot.

Results: Cur not only improved cognitive function and spatial memory, but also alleviated the pathological damage and apoptosis of brain tissues for AD mice. Meanwhile, upon Cur treatment, the number of damaged neurons in AD mice was decreased, the level of Aβ1-42 in AD mice was significantly decreased. Furthermore, the AD mice treated with Cur exhibited lower TNF-a, IL-6, IL-1β and MDA levels and a higher SOD content. Besides, Cur also downregulated p65 expression and upregulated AMPK phosphorylation.

Conclusion: Cur may improve AD via suppressing the inflammatory response, oxidative stress and activating the AMPK pathway, suggesting that Cur may be a potential drug for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2023.102363DOI Listing

Publication Analysis

Top Keywords

brain tissues
12
cur
9
alzheimer's disease
8
inflammatory response
8
response oxidative
8
oxidative stress
8
stress activating
8
activating ampk
8
ampk pathway
8
mice
8

Similar Publications

Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!