Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles.

Biochim Biophys Acta Biomembr

Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, USA. Electronic address:

Published: February 2024

Vesicular trafficking facilitates material transport between membrane-bound organelles. Membrane protein cargos are trafficked for relocation, recycling, and degradation during various physiological processes. In vitro fusion studies utilized synthetic lipid membranes to study the molecular mechanisms of vesicular trafficking and to develop synthetic materials mimicking the biological membrane trafficking. Various fusogenic conditions which can induce vesicular fusion have been used to establish synthetic systems that can mimic biological systems. Despite these efforts, the mechanisms underlying vesicular trafficking of membrane proteins remain limited and robust in vitro methods that can construct synthetic trafficking systems for membrane proteins between large membranes (>1 μm) are unavailable. Here, we provide data to show the spontaneous transfer of small membrane-bound peptides (∼4 kD) between a supported lipid bilayer (SLB) and giant unilamellar vesicles (GUVs). We found that the contact between the SLB and GUVs led to the occasional but notable transfer of membrane-bound peptides in a physiological saline buffer condition (pH 7.4, 150 mM NaCl). Quantitative and dynamic time-lapse analyses suggested that the observed exchange occurred through the formation of hemi-fusion stalks between the SLB and GUVs. Larger protein cargos with a size of ∼77 kD could not be transferred between the SLB and GUVs, suggesting that the larger-sized cargos limited diffusion across the hemi-fusion stalk, which was predicted to have a highly curved structure. Compositional study showed Ni-chelated lipid head group was the essential component catalyzing the process. Our system serves as an example synthetic platform that enables the investigation of small-peptide trafficking between synthetic membranes and reveals hemi-fused lipid bridge formation as a mechanism of peptide transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2023.184256DOI Listing

Publication Analysis

Top Keywords

vesicular trafficking
12
slb guvs
12
spontaneous transfer
8
transfer small
8
supported lipid
8
lipid bilayer
8
giant unilamellar
8
unilamellar vesicles
8
protein cargos
8
membrane proteins
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Genetic studies have established that loss of function SORL1 gene variants are associated with Alzheimer's disease (AD). SORL1 encodes an endosomal trafficking receptor, SORLA, which regulates endosomal protein recycling through its interaction with the retromer core complex (consisting of VPS26, VPS35 and VPS29). Deficits in the levels and function of the SORLA-retromer complex are thought to underlie AD.

View Article and Find Full Text PDF

Regulation of INPP5E in Ciliogenesis, Development, and Disease.

Int J Biol Sci

January 2025

Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.

Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.

View Article and Find Full Text PDF

Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function.

Elife

January 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, Albuquerque, United States.

ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer's core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane.

View Article and Find Full Text PDF

The TRAPP (TRAnsport Protein Particle) protein complex is a multi-subunit complex involved in vesicular transport between intracellular compartments. The TRAPP complex plays an important role in endoplasmic reticulum-to-Golgi and Golgi-to-plasma membrane transport, as well as autophagy. TRAPP complexes comprise a core complex, TRAPPI, and the association of peripheral protein subunits to make two complexes, known as TRAPPII and TRAPPIII, which act as Guanine Nucleotide Exchange Factors (GEFs) of Rab11 and Rab1, respectively.

View Article and Find Full Text PDF

is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signaling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!