The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761003 | PMC |
http://dx.doi.org/10.1016/j.cell.2023.10.020 | DOI Listing |
Physiol Plant
January 2025
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.
View Article and Find Full Text PDFBackground And Aims: The human body requires a relatively little quantity of sodium to transmit nerve impulses, contract and relax muscles, and maintain appropriate water and mineral balance and which is typically added from diets. The study aimed to assess the level of knowledge, attitude, and practice regarding high salt intake and their association with hypertension among rural women of a selected community in Chandpur.
Methods: A cross-sectional study was adopted to collect data from 250 households of Chandpur district.
Nutrients
January 2025
Division of Human Nutrition and Health, Wageningen University & Research, 6700 AB Wageningen, The Netherlands.
Background: Rapid socio-economic developments confront China with a rising consumption of ultra-processed foods (UPFs) and ultra-processed drinks (UPDs). This study aims to evaluate their potential impact on diet transformation towards sustainability including nutrition, environmental sustainability, and diet-related cost.
Methods: Dietary intake was assessed by 24 h recalls in 27,311 participants (age: 40.
Polymers (Basel)
January 2025
Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.
Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.
View Article and Find Full Text PDFActa Parasitol
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
Purpose: This study aimed to assess the anticoccidial effects of betaine and a vaccine compared to monensin sodium in experimentally induced coccidiosis in broiler chickens.
Methods: 600 day-old broiler chickens (Ross 308) were randomly assigned to five groups, each with four replicates of 30 birds. While the control group received a basal diet, two experimental groups received basal diet supplemented with either 100 mg/kg monensin sodium or 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!