Block copolymers (BCPs) are particularly effective in creating soft nanostructured templates for transferring complex 3D network structures into inorganic materials that are difficult to fabricate by other methods. However, achieving control of the local ordering within these 3D networks over large areas remains a significant obstacle to advancing material properties. Here, we address this challenge by directing the self-assembly of a 3D alternating diamond morphology by solvent vapor annealing of a triblock terpolymer film on a chemically patterned substrate. The hexagonal substrate patterns were designed to match a (111) plane of the diamond lattice. Commensurability between the sparse substrate pattern and the BCP lattice produced a uniformly ordered diamond network within the polymer film, as confirmed by a combination of atomic force microscopy and cross-sectional imaging using focused ion beam scanning electron microscopy. The successful replication of the complex and well-ordered 3D network structure in gold promises to advance optical metamaterials and has potential applications in nanophotonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739600 | PMC |
http://dx.doi.org/10.1021/acsami.3c10619 | DOI Listing |
Macromol Biosci
January 2025
Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
J Am Chem Soc
January 2025
Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
ACS Macro Lett
December 2024
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 S8-36 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
Mesoporous carbons (MPCs) with a bimodal distribution of pore diameters are more advantageous than their monomodal counterparts for applications in adsorption, catalysis, and drug delivery systems; however, reports on their fabrication remain limited. In this study, we successfully fabricated bimodal MPCs using a soft template method with poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA)--poly(4-vinylpyridine) (P4VP)--polystyrene (PS) and resol. The blend samples formed microphase-separated structures comprising PTFEMA spheres, PS cylinders, and matrix domains composed of P4VP and resol, leading to the separation of the PTFEMA and PS domains.
View Article and Find Full Text PDFACS Nano
October 2024
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
Block copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!