A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

pH-Responsive Injectable Multifunctional Pluronic F127/Gelatin-Based Hydrogels with Hydrogen Production for Treating Diabetic Wounds. | LitMetric

Diabetic chronic wounds remain a major clinical challenge with long-term inflammatory responses and extreme oxidative damage. Hence, a pH-responsive injectable multifunctional hydrogel [Gel/CUR-FCHO/Mg (GCM) micromotors] via a Schiff base reaction between gelatin and benzaldehyde-grafted Pluronic F127 drug-loaded micelles (FCHO) was fabricated for the first time. Dynamic Schiff base linkage endowed the GCM hydrogel with the ability to be self-healing, injectable, and pH-responsive for on-demand drug delivery at the wound site. Curcumin (CUR), a hydrophobic drug with antioxidative, anti-inflammatory, and antibacterial activities, was encapsulated into the hydrogel matrix by micellization (CUR-FCHO micelles). Simultaneously, magnesium-based micromotors (Mg micromotors) were physically entrapped into the system for providing active hydrogen (H) to scavenge reactive oxygen species and alleviate inflammatory responses. As a result, the GCM micromotor hydrogel displayed an inherent antibacterial property, extraordinary antioxidative performance, and remarkable biocompatibility. In the diabetic mouse with a full-thickness cutaneous defect wound, the GCM hydrogel could remodel the inflammatory microenvironment and stimulate vascularization and collagen deposition, thereby facilitating wound closure and enhancing tissue regeneration, which offered a promising therapeutic option for diabetic chronic wound management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c12672DOI Listing

Publication Analysis

Top Keywords

ph-responsive injectable
8
injectable multifunctional
8
diabetic chronic
8
inflammatory responses
8
schiff base
8
gcm hydrogel
8
hydrogel
5
multifunctional pluronic
4
pluronic f127/gelatin-based
4
f127/gelatin-based hydrogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!