Download full-text PDF |
Source |
---|
Vet Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
Organisms have the capacity to detect day-night fluctuations through oscillators regulated by circadian clock genes, which are crucial for regulating various biological processes. Numerous studies have demonstrated a marked association between these genes and various growth traits of sheep. This study identified polymorphisms at 23 potential loci within five clock genes in four Chinese sheep breeds.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
School of Science, Engineering and Environment, Salford University, Manchester, UK.
Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations.
View Article and Find Full Text PDFChronobiol Int
January 2025
Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan.
The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness.
View Article and Find Full Text PDFMol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain. Electronic address:
Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!