Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The needs for sustainable development and energy efficient manufacturing are crucial in the development of future composite materials. Out-of-oven (OoO) curing of fiber-reinforced composites based on smart conductive polymers reduces energy consumption and self-regulates the heating temperature with enhanced safety in manufacturing, presenting an excellent example of such energy efficient approaches. However, achieving the desired curing processes, especially for high-performance systems where two-stage curing is often required, remains a great challenge. In this study, a ternary system consisting of graphene nanoplatelets/HDPE/PVDF was developed, with a double positive temperature coefficient (PTC) effect achieved to fulfill stable self-regulating heating at two temperatures (120 and 150 °C). Systematic studies on both single and double PTC effects were performed, with morphological analysis to understand their pyroresistive behaviors. Compared to the oven curing process, up to 97% reduction in the energy consumption was achieved by the ternary system, while comparable thermal and mechanical properties were obtained in the carbon fiber/epoxy laminates. This work presents a new route to achieve OoO curing with two-stage self-regulating heating, which can be utilized in many high-performance composite applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711706 | PMC |
http://dx.doi.org/10.1021/acsami.3c12901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!