Acute cellular stress is known to induce a global reduction in mRNA translation through suppression of cap dependent translation. Selective translation in response to acute stress has been shown to play important roles in regulating the stress response. However, accurately profiling translational changes transcriptome-wide in response to acute cellular stress has been challenging. Commonly used data normalization methods operate on the assumption that any systematic shifts are experimental artifacts. Consequently, if applied to profiling acute cellular stress-induced mRNA translation changes, these methods are expected to produce biased estimates. To address this issue, we designed, produced, and evaluated a panel of 16 oligomers to serve as external standards for ribosome profiling studies. Using Sodium Arsenite treatment-induced oxidative stress in lymphoblastoid cell lines as a model system, we applied spike-in oligomers as external standards. We found our spike-in oligomers to display a strong linear correlation between the observed and the expected quantification, with small ratio compression at the lower concentration range. Using the expected fold changes constructed from spike-in controls, we found in our dataset that TMM normalization, a popular global scaling normalization approach, produced 87.5% false positives at a significant cutoff that is expected to produce only 10% false positive discoveries. In addition, TMM normalization produced a systematic shift of fold change by 3.25 fold. These results highlight the consequences of applying global scaling approaches to conditions that clearly violate their key assumptions. In contrast, we found RUVg normalization using spike-in oligomers as control genes recapitulated the expected stress induced global reduction of translation and resulted in little, if any, systematic shifts in the expected fold change. Our results clearly demonstrated the utility of our spike-in oligomers, both for constructing expected results as controls and for data normalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662766 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294308 | PLOS |
Brief Bioinform
November 2023
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, 92037, CA, USA.
The coronavirus disease 2019 (COVID-19) pandemic has spurred a wide range of approaches to control and combat the disease. However, selecting an effective antiviral drug target remains a time-consuming challenge. Computational methods offer a promising solution by efficiently reducing the number of candidates.
View Article and Find Full Text PDFPLoS One
November 2023
Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.
Acute cellular stress is known to induce a global reduction in mRNA translation through suppression of cap dependent translation. Selective translation in response to acute stress has been shown to play important roles in regulating the stress response. However, accurately profiling translational changes transcriptome-wide in response to acute cellular stress has been challenging.
View Article and Find Full Text PDFJ Phys Chem B
October 2022
Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia.
Intrinsically disordered peptides, such as amyloid β42 (Aβ42), lack a well-defined structure in solution. Aβ42 can undergo abnormal aggregation and amyloidogenesis in the brain, forming fibrillar plaques, a hallmark of Alzheimer's disease. The insoluble fibrillar forms of Aβ42 exhibit well-defined, cross β-sheet structures at the molecular level and are less toxic than the soluble, intermediate disordered oligomeric forms.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2018
Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. Electronic address:
DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product.
View Article and Find Full Text PDFBrain Res
October 2010
Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
Diffusible oligomeric assemblies of the amyloid beta-protein (Abeta) could be the primary factor in the pathogenic pathway leading to Alzheimer's disease (AD). Converging lines of evidence support the notion that AD begins with subtle alterations in synaptic efficacy, prior to the occurrence of extensive neuronal degeneration. Recently, however, a shared or overlapping pathogenesis for AD and epileptic seizures occurred as aberrant neuronal hyperexcitability, as well as nonconvulsive seizure activity were found in several different APP transgenic mouse lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!