The redox-active nature of a pincer has been exploited to conduct C-C cross-coupling reactions under mild conditions. A nickel complex with a NNN pincer was dimeric in the solid state, and the structure displayed a Ni N diamond core. In the dimeric structure, both ligand backbones house an electron, in the iminosemiquinonate form, to keep the metal's oxidation state at +2. In the presence of an aryl Grignard reagent, only 3 mol % loading the nickel complex generates a Kumada cross-coupled product in good yield from a wide variety of aryl-X (X= I, Br, Cl) substrates. That the ligand-based radical remains responsible for promoting such a coupling reaction following a radical pathway is suggested by TEMPO quenching. Furthermore, a radical-clock experiment along with tracing product distribution unambiguously supported the radical's involvement through the catalytic cycle. A series of thorough mechanistic probation, including computational DFT analysis, disclosed the cooperative action of both redox-active pincer ligand and the metal centre to drive the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202303189DOI Listing

Publication Analysis

Top Keywords

pincer ligand
8
cross-coupling reactions
8
nickel complex
8
multielectron redox
4
redox afforded
4
pincer
4
afforded pincer
4
ligand promoting
4
promoting kumada
4
kumada cross-coupling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!