In this article, the degradability by Aspergillus niger and Aspergillus clavatus of three bio-based polyurethane (PU) foams is compared to previous degradability studies involving a Pseudomonas sp. bacterium and similar initial materials (Spontón et al. in Int. Biodet. Biodeg. 85:85-94, 2013, https://doi.org/10.1016/j.ibiod.2013.05.019 ). First, three new polyester-polyurethane foams were prepared from mixtures of castor oil (CO), maleated castor oil (MACO), toluene diisocyanate (TDI), and water. Then, their degradation tests were carried out in an aqueous medium, and employing the two mentioned fungi, after their isolation from the environment. From the degradation tests, the following was observed: (a) the insoluble (and slightly collapsed) foams exhibited free hydroxyl, carboxyl, and amine moieties; and (b) the water soluble (and low molar mass) compounds contained amines, carboxylic acids, and glycerol. The most degraded foam contained the highest amount of MACO, and therefore the highest concentration of hydrolytic bonds. A basic biodegradation mechanism was proposed that involves hydrolysis and oxidation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10532-023-10059-w | DOI Listing |
Biodegradation
June 2024
Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), UNL-CONICET, Ruta Nacional 168, Km. 0 - Paraje "El Pozo", 3000, Santa Fe, Argentina.
In this article, the degradability by Aspergillus niger and Aspergillus clavatus of three bio-based polyurethane (PU) foams is compared to previous degradability studies involving a Pseudomonas sp. bacterium and similar initial materials (Spontón et al. in Int.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Department of Mechanical and Industrial Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
The sustainable use of agricultural waste to generate valuable products while minimizing environmental burdens is increasing rapidly. Multiple sources of fibers have been intensively studied concerning their application in various fields and industries. However, few publications have extensively discussed the property's performance of oil palm empty fruit bunches (OPEFB) composites.
View Article and Find Full Text PDFEnviron Int
February 2019
DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany. Electronic address:
Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g.
View Article and Find Full Text PDFEnviron Sci Technol
August 2017
Fiber Science Program, Cornell University, 37 Forest Home Drive, Ithaca, New York 14850, United States.
Separation of toxic organic pollutants from industrial effluents is a great environmental challenge. Herein, an acid-base engineered foam is employed for separation of micro-oil droplets from an aqueous solution. In acidic or basic environments, acid-base polymers acquire surface charge due to protonation or dissociation of surface active functional groups.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2016
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
Unlabelled: Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!