Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Dynamic metal nanoclusters have become a hot area of research in the field of nanoscience and nanotechnology due to their potential applications in micro devices. One such dynamic cluster is a quasi-planar ground state (GS) Al cluster which exhibits an electric field driven up and down flipping motion of the flexible tail which oscillates with respect to the mean plane. A Car-Parrinello molecular dynamics (CPMD) simulation has been carried out to understand the nature of dynamics of the cluster. CPMD simulation study reveals that the flexible tail region of the Al isomeric system (two ground states M1, M2 and a transition state TS connecting them) can be engaged in a systematic up down flipping motion by the application of a transverse electric field. A saw tooth electric field of amplitude 5.19 V/nm is sufficient to induce the up-and-down flipping oscillation of the cluster, which has an average oscillation frequency of around 20 THz. AIM, NICS and AdNDP analyses also have been carried out to understand the fluxional nature of the cluster from the electronic structural perspective. Electronic structural analysis of selected optimized intermediate states in the presence of transverse electric field has also been analyzed to correlate the electronic structure with the dynamic nature of the cluster.
Methods: Single-point energies of all intermediate states between two minima of Al clusters connected through a transition state cluster. Optimized geometries of Al clusters in the presence of electric field of different strengths have been carried out by using the Gaussian 03 package. 6-311 + G(d) basis set and B3LYP hybrid density functional have been utilized for these studies. To establish the flipping motion, Car-Parrinello molecular dynamics (CPMD) has been performed using the cp.x module of the Quantum ESPRESSO 6.3.0 program package using the Perdew-Burke-Ernzerhof (PBE) functional, plane-wave basis set and ultrasoft pseudopotentials. ORTEP-3 and POV ray-3.7 software packages have been used for visualization and graphics generation. Atoms in molecule (AIM), Adaptive Natural Density Partitioning (AdNDP) analysis have been carried out using Multiwfn 3.7 program package.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05781-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!