AI Article Synopsis

  • * Optogenetic stimulation shows that whisker movements can be activated in various cerebellar regions, with the paramedian lobule having the quickest response time, while Purkinje cells vary in how they encode whisker position and velocity during actions like protraction and retraction.
  • * The findings indicate that both the cerebellar cortex and nuclei have a complex representation of whisker kinematics, predominantly focusing on velocity, which enhances our understanding of how the cerebellum contributes to coordinating

Article Abstract

The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP284064DOI Listing

Publication Analysis

Top Keywords

purkinje cells
28
cerebellar nuclei
12
lobule simplex
12
whisker
9
cells
9
whisker kinematics
8
encode whisker
8
cerebellar
8
represented cerebellar
8
cerebellar hemisphere
8

Similar Publications

Embryonic exposure to acetamiprid insecticide induces CD68-positive microglia and Purkinje cell arrangement abnormalities in the cerebellum of neonatal rats.

Toxicol Appl Pharmacol

December 2024

Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Diversity and Inclusion, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan. Electronic address:

Concerns have been raised regarding acetamiprid (ACE), a neonicotinoid insecticide, due to its potential neurodevelopmental toxicity. ACE, which is structurally similar to nicotine, acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and resists degradation by acetylcholinesterase. Furthermore, ACE has been reported to disrupt neuronal transmission and induce developmental neurotoxicity and ataxia in animal models.

View Article and Find Full Text PDF

Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties.

View Article and Find Full Text PDF

In term neonates with hypoxic-ischemic encephalopathy (HIE), cerebellar injury is becoming more and more acknowledged. Animal studies demonstrated that Purkinje cells (PCs) are especially vulnerable for hypoxic-ischemic injury. In neonates, however, the extent and pattern of PC injury has not been investigated.

View Article and Find Full Text PDF

The Jun dimerization protein (Jdp2) gene is active in mouse cerebellar granule cells and its protein product plays a crucial role in the formation of the cerebellum lobes through programmed cell death. However, the role of Jdp2 in cellular differentiation and pluripotency in the cerebellum, and the effect of the antioxidation reaction on cell plasticity, remain unknown. N-acetyl-L-cysteine (NAC) induced the early commitment of the differentiation of granule cell precursors (GCPs) to neurons, especially Purkinje cells, via the γ-aminobutyric acid type A receptor α6 subunit (Gabra6) axis; moreover, Jdp2 depletion enhanced this differentiation program of GCPs.

View Article and Find Full Text PDF

Myelin formation by oligodendrocytes regulates the conduction velocity and functional integrity of neuronal axons. While individual oligodendrocytes form myelin sheaths around multiple axons and control the functions of neural circuits where the axons are involved, it remains unclear if oligodendrocytes selectively form myelin sheaths around specific subtypes of axons. Using the combination of rabies virus-mediated single oligodendrocyte labeling and immunostaining with tissue clearing, we revealed that approximately half of the oligodendrocytes preferentially myelinate axons originating from Purkinje cells in the white matter of adult mouse cerebella.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!