Aim: The aim is to record the surface roughness of monolithic chairside CAD/CAM zirconia materials to evaluate the influence of milling speed on the ability to achieve a clinically desirable surface. The null hypothesis is that there is no significant difference in the surface roughness of different zirconia materials based on the speed of subtractive milling.

Materials And Methods: All test samples were milled from four different monolithic CAD/CAM zirconia blocks including CEREC Zirconia (Dentsply Sirona), CEREC Zirconia+ (Dentsply Sirona), CEREC MTL Zirconia (Dentsply Sirona), and Katana Zirconia (Kuraray Noritake). Four different dry milling speeds, Super Fast/Good, Super Fast/Very Good, Fast, and Fine were used to dry mill the specimens in a CEREC Primemill (Dentsply Sirona). A 3D measuring laser microscope (OLS4100 LEXT by Olympus) was used to measure surface roughness.

Results: An Analysis of Variance (ANOVA) was used to analyze the surface roughness data for each material and milling speed. There was a significant difference for milling speed (p < 0.05) but not between zirconia materials (p > 0.05).

Conclusion: Based on the limitations of this study, the milling speed influenced the surface roughness of dry milled and sintered zirconia with slower speeds resulting in smoother surfaces. The largest improvement in surface roughness occurred between Super Fast and Fast milling with a smaller incremental improvement in surface roughness with Fine milling for the Primemill. All recorded surface roughness values are within the expected range of values to be able to efficiently hand polish a clinically acceptable surface finish.

Download full-text PDF

Source
http://dx.doi.org/10.3290/j.ijcd.b4673355DOI Listing

Publication Analysis

Top Keywords

surface roughness
28
milling speed
16
dentsply sirona
16
zirconia materials
12
surface
11
chairside cad/cam
8
materials based
8
zirconia
8
cad/cam zirconia
8
zirconia dentsply
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!