New neurones are generated throughout life in the mammalian brain in a process known as adult hippocampal neurogenesis (AHN). Since this phenomenon grants a high degree of neuroplasticity influencing learning and memory, identifying factors that regulate AHN may be important for ameliorating age-related cognitive decline. Calorie restriction (CR) has been shown to enhance AHN and improve memory, mediated by the stomach hormone, ghrelin. Intermittent fasting (IF), a dietary strategy offering more flexibility than conventional CR, has also been shown to promote aspects of AHN. The 5:2 diet is a popular form of IF; however, its effects on AHN are not well characterised. To address this, we quantified AHN in adolescent and adult wild-type and ghrelin-receptor-deficient mice following 6 weeks on a 5:2 diet. We report an age-related decline in neurogenic processes. However, the 5:2 diet does not increase AHN nor enhance memory performance, suggesting that this specific form of IF is ineffective in promoting brain plasticity to support learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702912PMC
http://dx.doi.org/10.15252/embr.202357269DOI Listing

Publication Analysis

Top Keywords

diet increase
8
adult hippocampal
8
hippocampal neurogenesis
8
ahn
7
diet
4
increase adult
4
neurogenesis enhance
4
enhance spatial
4
memory
4
spatial memory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!