3D nitrogen-doped carbon frameworks with hierarchical pores and graphitic carbon channels for high-performance hybrid energy storages.

Mater Horiz

Department of Materials Science and Engineering, NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Published: January 2024

In principle, hybrid energy storages can utilize the advantages of capacitor-type cathodes and battery-type anodes, but their cathode and anode materials still cannot realize a high energy density, fast rechargeable capability, and long-cycle stability. Herein, we report a strategy to synthesize cathode and anode materials as a solution to overcome this challenge. Firstly, 3D nitrogen-doped hierarchical porous graphitic carbon (NHPGC) frameworks were synthesized as cathode materials using Co-Zn mixed metal-organic frameworks (MOFs). A high capacity is achieved due to the abundant nitrogen and micropores produced by the MOF nanocages and evaporation of Zn. Also, fast ion/electron transport channels were derived through the Co-catalyzed hierarchical porosity control and graphitization. Moreover, tin oxide precursors were introduced in NHPGC to form the SnO@NHPGC anode. X-ray diffraction revealed that the rescaled subnanoparticles as anodic units facilitated the high capacity during ion insertion-induced rescaling. Besides, the Sn-N bonds endowed the anode with a cycling stability. Furthermore, the NHPGC cathode and SnO@NHPGC achieved an ultrahigh energy density (up to 244.5 W h kg for Li and 146.1 W h kg for Na), fast rechargeable capability (up to 93C-rate for Li and 147C-rate for Na) as exhibited by photovoltaic recharge within a minute and a long-cycle stability with ∼100% coulombic efficiency over 10 000 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3mh01473hDOI Listing

Publication Analysis

Top Keywords

graphitic carbon
8
hybrid energy
8
energy storages
8
cathode anode
8
anode materials
8
energy density
8
fast rechargeable
8
rechargeable capability
8
long-cycle stability
8
high capacity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!