Mutations in the X-linked endosomal Na+/H+ Exchanger 6 (NHE6) causes Christianson Syndrome (CS). In the largest study to date, we examine genetic diversity and clinical progression, including cerebellar degeneration, in CS into adulthood. Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. Forty-four individuals with 31 unique NHE6 mutations, age 2 to 32 years, were followed prospectively, herein reporting baseline, 1-year follow-up, and retrospective natural history. We present data on the CS phenotype with regard to physical growth, adaptive and motor regression, and across the lifespan, including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model: the rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined: a majority of adult (18+ years) participants lost gross and fine motor skills over a 1-year follow-up. Previously defined core diagnostic criteria for CS (present in >85%) - namely nonverbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia - were universally present in age 6 to 16; however, an additional core feature of high pain tolerance was added (present in 91%), and furthermore, evolution of symptoms were noted across the lifespan, such that postnatal microcephaly, ataxia and high pain threshold were often not apparent prior to age 6, and hyperkinesis decreased after age 16. While neurologic exams were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype, thereby identifying critical targets for treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659496 | PMC |
http://dx.doi.org/10.1101/2023.11.11.23298218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!