Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The RNA-targeting CRISPR nuclease Cas13 has emerged as a powerful tool for applications ranging from nucleic acid detection to transcriptome engineering and RNA imaging. Cas13 is activated by the hybridization of a CRISPR RNA (crRNA) to a complementary single-stranded RNA (ssRNA) protospacer in a target RNA. Though Cas13 is not activated by double-stranded RNA (dsRNA) , it paradoxically demonstrates robust RNA targeting in environments where the vast majority of RNAs are highly structured. Understanding Cas13's mechanism of binding and activation will be key to improving its ability to detect and perturb RNA; however, the mechanism by which Cas13 binds structured RNAs remains unknown. Here, we systematically probe the mechanism of LwaCas13a activation in response to RNA structure perturbations using a massively multiplexed screen. We find that there are two distinct sequence-independent modes by which secondary structure affects Cas13 activity: structure in the protospacer region competes with the crRNA and can be disrupted via a strand-displacement mechanism, while structure in the region 3' to the protospacer has an allosteric inhibitory effect. We leverage the kinetic nature of the strand displacement process to improve Cas13-based RNA detection, enhancing mismatch discrimination by up to 50-fold and enabling sequence-agnostic mutation identification at low (<1%) allele frequencies. Our work sets a new standard for CRISPR-based nucleic acid detection and will enable intelligent and secondary-structure-guided target selection while also expanding the range of RNAs available for targeting with Cas13.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659300 | PMC |
http://dx.doi.org/10.1101/2023.10.05.560533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!