Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index metric, an adaptation of , and describing distributions of these metrics in real-life setting. Analysis of accelerometer data from 2,859 individuals (age=60-83 years, 21.1% women) from the Whitehall II cohort (UK) shows modest correlations between the metrics, except for ABI and . Sociodemographic (age, sex, education, employment status) and clinical (body mass index (BMI), and number of morbidities) factors were associated with these metrics, with differences observed according to metrics. For example, a difference of 5 units in BMI was associated with all metrics (differences ranging between -0.261 (95% CI -0.302, -0.220) to 0.228 (0.18, 0.268) for standardised TP rest to activity during the awake period and TP activity to rest during the awake period, respectively). These results reinforce the value of these rest-activity fragmentation metrics in epidemiological and clinical studies to examine their role for health. This paper expands on a set of methods that have previously demonstrated empirical value, improves the theoretical foundation for these methods, and evaluates their empirical worth in a large dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659546 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3543711/v1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!