Transcriptomic changes during the replicative senescence of human articular chondrocytes.

bioRxiv

Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.

Published: November 2023

Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability worldwide. Aging is a major risk factor for OA, but the specific mechanisms underlying this connection remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence which provides an opportunity to study changes related to aging under controlled laboratory conditions. In this pilot study, we performed bulk RNA sequencing on early- and late-passage human articular chondrocytes to identify transcriptomic changes associated with cellular aging. Chondrocytes were isolated from the articular cartilage of three donors, two with OA (age 70-80 years) and one with healthy cartilage (age 26 years). Chondrocytes were serially passaged until replicative senescence and RNA extracted from early- and late-passage cells. Principal component analysis of all genes showed clear separation between early- and late-passage chondrocytes, indicating substantial age-related differences in gene expression. Differentially expressed genes (DEGs) analysis confirmed distinct transcriptomic profiles between early- and late-passage chondrocytes. Hierarchical clustering revealed contrasting expression patterns between the two isolates from osteoarthritic samples and the healthy sample. Focused analysis of DEGs on transcripts associated with turnover of the extra-cellular matrix and the senescence-associated secretory phenotype (SASP) showed consistent downregulation of Col2A1 and ACAN, and upregulation of MMP19, ADAMTS4, and ADAMTS8 in late passage chondrocytes across all samples. SASP components including IL-1α, IL-1β, IL-6, IL-7, p16 (CDKN2A) and CCL2 demonstrated significant upregulation in late passage chondrocytes originally isolated from OA samples. Pathway analysis between sexes with OA revealed shared pathways such as extracellular matrix (ECM) organization, collagen formation, skeletal and muscle development, and nervous system development. Sex-specific differences were observed, with males showing distinctions in ECM organization, regulation of the cell cycle process as well as neuron differentiation. In contrast, females exhibited unique variations in the regulation of the cell cycle process, DNA metabolic process, and the PID-PLK1 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659330PMC
http://dx.doi.org/10.1101/2023.11.07.565835DOI Listing

Publication Analysis

Top Keywords

early- late-passage
16
replicative senescence
12
chondrocytes
9
transcriptomic changes
8
human articular
8
articular chondrocytes
8
articular cartilage
8
late-passage chondrocytes
8
late passage
8
passage chondrocytes
8

Similar Publications

Transcriptomic Changes During the Replicative Senescence of Human Articular Chondrocytes.

Int J Mol Sci

November 2024

Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.

Aging is a major risk factor for osteoarthritis (OA), but the specific mechanisms connecting aging and OA remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence in vitro, offering a model to study aging-related changes under controlled conditions. OA cartilage was obtained from an 80-year-old male and a 72-year-old female, while normal cartilage was sourced from a 26-year-old male.

View Article and Find Full Text PDF

Purpose: The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity.

View Article and Find Full Text PDF

Identification of Reference Gene for Quantitative Gene Expression in Early-Term and Late-Term Cultured Canine Fibroblasts Derived from Ear Skin.

Animals (Basel)

September 2024

Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 61186, Republic of Korea.

Fibroblasts are cells that reside within the fibrous or loose connective tissues of most mammalian organs. For research purposes, fibroblasts are often subjected to long-term culture under defined conditions, during which their properties can significantly change. It is essential to understand and document these changes to obtain reliable outcomes.

View Article and Find Full Text PDF

Chorionic mesenchymal stromal cells (CHO-MSCs) and their extracellular vesicles (EVs) are becoming increasingly popular, since chorion is ethically harmless and an easily accessible source of MSCs. However, until now there is only a limited number of studies with a thorough characterization of CHO-MSCs derived EVs and their miRNA profile. In this study, we monitored changes in the EV-miRNA profile between early and late passage of human CHO-MSCs.

View Article and Find Full Text PDF

Background: Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging , which usually accompanies and potentially affect DPSC characteristics and activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!