Terminal differentiation requires a massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identified dynamic recruitment of RNA Polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation Changes in enhancer-promoter looping interactions accompany dynamic Pol II recruitment and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of- function, ChIP-seq and IP mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II recruitment at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms which drive differentiation gene expression and find pause-release of Pol II and post- transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in a renewing adult tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659318 | PMC |
http://dx.doi.org/10.1101/2023.11.08.566322 | DOI Listing |
Virus Evol
December 2024
Department of Epidemiology and Population Health, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States.
Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022.
View Article and Find Full Text PDFFront Microbiol
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.
[This corrects the article DOI: 10.3389/fmicb.2023.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Background: Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye.
Purpose: The inflammatory response in animal models of chronic obstructive pulmonary disease (COPD) is activated by the NLR-family-pyrin-domain-containing-3 (NLRP3) inflammasome pathway, which is also known to play a role in obesity-related inflammation. The NLRP3/caspase-1/interleukin (IL)-1β pathway might be involved in the progression of COPD with increasing body mass index. To our knowledge, no previous studies have explored the role of NLRP3 inflammasome markers in linking COPD and obesity.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Biology, University of York, York, YO10 5DD, UK.
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to normalise mRNA levels, allowing accurate assessment of transcriptional changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!