Phytochromes are essential photoreceptor proteins in plants with homologs in bacteria and fungi that regulate a variety of important environmental responses. They display a reversible photocycle between two distinct states, the red-light absorbing Pr and the far-red light absorbing Pfr, each with its own structure. The reversible Pr to Pfr photoconversion requires covalently bound bilin chromophore and regulates the activity of a C-terminal enzymatic domain, which is usually a histidine kinase (HK). In plants, phytochromes translocate to nucleus where the C-terminal effector domain interacts with protein interaction factors (PIFs) to induce gene expression. In bacteria, the HK phosphorylates a response-regulator (RR) protein triggering downstream gene expression through a two-component signaling pathway. Although plant and bacterial phytochromes share similar structural composition, they have contrasting activity in the presence of light with most BphPs being active in the dark. The molecular mechanism that explains bacterial and plant phytochrome signaling has not been well understood due to limited structures of full-length phytochromes with enzymatic domain resolved at or near atomic resolution in both Pr and Pfr states. Here, we report the first Cryo-EM structures of a wild-type bacterial phytochrome with a HK enzymatic domain, determined in both Pr and Pfr states, between 3.75 and 4.13 Å resolution, respectively. Furthermore, we capture a distinct Pr/Pfr heterodimer of the same protein as potential signal transduction intermediate at 3.75 Å resolution. Our three Cryo-EM structures of the distinct signaling states of BphPs are further reinforced by Cryo-EM structures of the truncated PCM of the same protein determined for the Pr/Pfr heterodimer as well as Pfr state. These structures provide insight into the different light-signaling mechanisms that could explain how bacteria and plants see the light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659365PMC
http://dx.doi.org/10.1101/2023.11.08.566274DOI Listing

Publication Analysis

Top Keywords

enzymatic domain
12
cryo-em structures
12
signal transduction
8
gene expression
8
pfr states
8
pr/pfr heterodimer
8
pfr
5
structures
5
enzymatic
4
transduction enzymatic
4

Similar Publications

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.

View Article and Find Full Text PDF

O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively.

View Article and Find Full Text PDF

Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.

View Article and Find Full Text PDF

MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development.

Biomolecules

December 2024

Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.

Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!