Sketching methods with small window guarantee using minimum decycling sets.

ArXiv

Computational Biology Department, Carnegie Mellon University, Pittsburgh PA 15213, USA.

Published: November 2023

Most sequence sketching methods work by selecting specific -mers from sequences so that the similarity between two sequences can be estimated using only the sketches. Because estimating sequence similarity is much faster using sketches than using sequence alignment, sketching methods are used to reduce the computational requirements of computational biology software packages. Applications using sketches often rely on properties of the -mer selection procedure to ensure that using a sketch does not degrade the quality of the results compared with using sequence alignment. Two important examples of such properties are locality and window guarantees, the latter of which ensures that no long region of the sequence goes unrepresented in the sketch. A sketching method with a window guarantee, implicitly or explicitly, corresponds to a , an unavoidable sets of -mers. Any long enough sequence, by definition, must contain a -mer from any decycling set (hence, it is unavoidable). Conversely, a decycling set also defines a sketching method by choosing the -mers from the set as representatives. Although current methods use one of a small number of sketching method families, the space of decycling sets is much larger, and largely unexplored. Finding decycling sets with desirable characteristics (e.g., small remaining path length) is a promising approach to discovering new sketching methods with improved performance (e.g., with small window guarantee). The (MDSs) are of particular interest because of their minimum size. Only two algorithms, by Mykkeltveit and Champarnaud, are previously known to generate two particular MDSs, although there are typically a vast number of alternative MDSs. We provide a simple method to enumerate MDSs. This method allows one to explore the space of MDSs and to find MDSs optimized for desirable properties. We give evidence that the Mykkeltveit sets are close to optimal regarding one particular property, the remaining path length. A number of conjectures and computational and theoretical evidence to support them are presented. Code available at https://github.com/Kingsford-Group/mdsscope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659450PMC

Publication Analysis

Top Keywords

sketching methods
16
window guarantee
12
decycling sets
12
sketching method
12
methods small
8
small window
8
sequence alignment
8
decycling set
8
remaining path
8
path length
8

Similar Publications

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

Background: Engaging patients in quality improvement and innovation projects is increasingly important, yet challenges persist with involving patients who speak languages other than English. This article presents design activities our team used to engage Spanish-speaking patients and cultural brokers.

Objective: To develop a clinician communication tool to enhance patient trust in pregnancy care clinicians, especially among minoritized populations who face language and cultural barriers, using human-centered design (HCD).

View Article and Find Full Text PDF

The snub-nosed, reclining, and serene image of the fetus is commonplace in cultural representations and analyses of obstetric ultrasound. Yet following the provocation of various feminist scholars, taking the fetal sonogram as the automatic object of concern vis-à-vis ultrasound cedes ground to anti-abortionists, who deploy fetal images to argue that life begins at conception and that the unborn are rights bearing subjects who must be protected. How might feminists escape this analytical trap, where discussions of ultrasonics must always be engaged in the act of debunking? This article orients away from the problem of fetal representation by employing a method which may appear to be wildly unsuitable: media archaeology.

View Article and Find Full Text PDF

Background: Antibiotic resistance in nursing homes (NHs) is inconsistently tackled by antimicrobial stewardship programmes. The literature on individual determinants of antibiotic prescriptions (APs) in NHs is extensive. However, less is known about the structural determinants of AP in NHs.

View Article and Find Full Text PDF

Toward a functional future for the cognitive neuroscience of human aging.

Neuron

January 2025

Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK. Electronic address:

The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!