A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables. | LitMetric

We present a simulation study and application that shows inclusion of binary proxy variables related to binary unmeasured confounders improves the estimate of a related treatment effect in binary logistic regression. The simulation study included 60,000 randomly generated parameter scenarios of sample size 10,000 across six different simulation structures. We assessed bias by comparing the probability of finding the expected treatment effect relative to the modeled treatment effect with and without the proxy variable. Inclusion of a proxy variable in the logistic regression model significantly reduced the bias of the treatment or exposure effect when compared to logistic regression without the proxy variable. Including proxy variables in the logistic regression model improves the estimation of the treatment effect at weak, moderate, and strong association with unmeasured confounders and the outcome, treatment, or proxy variables. Comparative advantages held for weakly and strongly collapsible situations, as the number of unmeasured confounders increased, and as the number of proxy variables adjusted for increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345871PMC
http://dx.doi.org/10.1002/pst.2323DOI Listing

Publication Analysis

Top Keywords

proxy variables
20
logistic regression
20
unmeasured confounders
12
proxy variable
12
inclusion binary
8
proxy
8
binary proxy
8
variables logistic
8
binary unmeasured
8
simulation study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!