Coffee is popular worldwide and its consumption is increasing in recent years. Although mass spectrometry-based lipidomics approaches have been prevalent, their application in studies related to detailed information and dynamic changes in lipid composition during coffee bean roasting is still limited. The aim of this study was to investigate the dynamic changes in coffee bean lipids during the roasting process. The lipid classes and lipid molecular species in coffee beans were characterized by lipidomic analysis combined with chemometrics. A total of 12 lipid classes and 105 lipid molecular species were identified and quantified. Triacylglycerols (TAG) was the most abundant lipid class in both green beans and roasted beans. The content of phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) in green beans was obviously higher than that in roasted beans. Other phospholipids, such as phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylcholine (PC), lysophophatidylcholine (LPC) and phosphatidic acid (PA), showed a tendency to increase at the beginning of roasting, then decreased gradually. Several differential lipid molecule species, for instance, PE (16:0_18:2), PC (18:2_18:2) were significantly down-regulated, and PI (18:1_18:2) was significantly up-regulated. This study provided a scientific basis for the change of coffee bean lipids during the roasting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113507 | DOI Listing |
JMIR Med Educ
March 2025
Department of Nursing, Max Stern Yezreel Valley College, Emek Yezreel, 193000, Israel, 972 523216544.
Background: Telenursing has become prevalent in providing care to diverse populations experiencing different health conditions both in Israel and globally. The nurse-patient relationship aims to improve the condition of individuals requiring health services.
Objectives: This study aims to evaluate nursing graduates' skills and knowledge regarding remote nursing care prior to and following a simulation-based telenursing training program in an undergraduate nursing degree.
J Am Chem Soc
March 2025
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties.
View Article and Find Full Text PDFElife
March 2025
Machine Learning Core, National Institute of Mental Health, Bethesda, United States.
Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense signals into summary measures, and discard trial-level information by averaging . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences.
View Article and Find Full Text PDFSci Adv
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China.
Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
U6 small nuclear RNA (U6 snRNA), a critical spliceosome component primarily found in the nucleus, plays a vital role in RNA splicing. Our previous study, using the simian immunodeficiency virus (SIV) macaque model, revealed an increase of U6 snRNA in plasma extracellular vesicles (EVs) in acute retroviral infection. Given the limited understanding of U6 snRNA dynamics across cells and EVs, particularly in SIV infection, this research explores U6 snRNA trafficking and its association with splicing proteins in the nucleus, cytoplasm, and EVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!