AI Article Synopsis

  • * This study focused on the pharmacokinetics and distribution of curcumin in optimized emulsions made with 50% MCT oil and soybean lecithin after oral administration to rats.
  • * Results showed a significant increase in curcumin's bioavailability (10.6-fold) when delivered via emulsion, with higher concentrations of biologically active curcuminoids found in the liver and brown adipose tissue, which may help prevent obesity and metabolic disorders.

Article Abstract

The health benefits of curcumin have been demonstrated by several clinical studies, but its low bioavailability compromises its functionality. In this regard, emulsions have proven to be effective encapsulation systems for curcumin. Nevertheless, emulsions with a high oil content (50%) may offer some advantages due to the large amount of compound they can incorporate. Therefore, the aim of this work was to study the pharmacokinetics and biodistribution of curcumin when carried in optimized emulsions containing 50% MCT oil and a plant-based emulsifier (soybean lecithin) at 2 h or 4 h post-oral administration to rats. The most stable emulsion was obtained using 50% of oil and a surfactant-oil-ratio 0.1, through a microfluidization process. After the oral administration of the systems (150 mg curcumin/kg body weight), curcumin glucuronide was the main compound present in plasma (AUC = 1556.3 ng·h·ml), especially at 2-4 h post-administration. The total curcuminoid bioavailability was increased by 10.6-fold when rats were fed with the curcumin emulsion rather than with a control suspension. Moreover, rats fed with the emulsion showed the highest accumulation of free curcuminoids, which present the highest biological activity, in the liver (129 ng curcumin/g tissue) and brown adipose tissue (193 ng curcumin/g tissue). The obtained results are of great interest since the presence of curcumin in the brown adipose tissue has been shown to play a relevant role in the prevention of obesity and its related metabolic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113595DOI Listing

Publication Analysis

Top Keywords

biodistribution curcumin
8
emulsions high
8
rats fed
8
curcumin/g tissue
8
brown adipose
8
adipose tissue
8
curcumin
7
enhanced vivo
4
vivo absorption
4
absorption biodistribution
4

Similar Publications

This study aims to construct a novel drug delivery strategy to address the poor bioavailability and biostability of curcumin. A curcumin delivery strategy, basing on post-polymerization modification of poly(2-vinyl-4,4-dimethyl azlactone) to obtain conjugates of curcumin and dendritic polymers, combined with sodium alginate coating is reported. The curcumin-polymer conjugates were shown to have good fluorescence properties with fluorescence quantum yields of 0.

View Article and Find Full Text PDF

Recent research suggests that advanced liver fibrosis could be reversed, but the therapeutic agents needed for the prevention of liver fibrosis remain to be elucidated. The beneficial effects of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) on liver fibrosis have been reported. However, the large-scale production of MSC-EVs remains challenging.

View Article and Find Full Text PDF

Silk fibroin nanoparticles (SFNs) have been widely investigated for drug delivery, but their clinical application still faces technical (large-scale and GMP-compliant manufacturing), economic (cost-effectiveness in comparison to other polymer-based nanoparticles), and biological (biodistribution assessments) challenges. To address biodistribution challenge, we provide a straightforward desolvation method (in acetone) to produce homogeneous SFNs incorporating increasing amounts of FeO (SFNs-Fe), detectable by Magnetic Resonance Imaging (MRI), and loaded with curcumin as a model lipophilic drug. SFNs-Fe were characterized by a homogeneous distribution of the combined materials and showed an actual FeO loading close to the theoretical one.

View Article and Find Full Text PDF

Modified Ce/Zr-MOF Nanoparticles Loaded with Curcumin for Alzheimer's Disease via Multifunctional Modulation.

Int J Nanomedicine

October 2024

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Introduction: Alzheimer's disease (AD), a neurodegenerative condition, stands as the most prevalent form of dementia. Its complex pathological mechanisms and the formidable blood-brain barrier (BBB) pose significant challenges to current treatment approaches. Oxidative stress is recognized as a central factor in AD, underscoring the importance of antioxidative strategies in its treatment.

View Article and Find Full Text PDF

In order to enhance the water solubility of chemotherapeutic drugs, improve their biodistribution and narrow therapeutic window, two molecules of PDAO and FA-DAO with acid-sensitive Schiff base structure were designed and synthesized based on dopamine linolenate (DAO) in this paper, and subsequently drug-loaded nanoparticles were prepared by simply mixing of them with curcumin (Cur) in aqueous solution. These nanoparticles can release a large amount of the drug in response to pH changes in the tumor microenvironment through passive targeting. The cumulative rate of drug release can reach up to 70% within 24 hours under pH = 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!