This study aimed to investigate the angelica sinensis - radix rehmanniae (AR) role in polycystic ovary syndrome (PCOS), employing network pharmacology and molecular docking techniques for active ingredient, targets, and pathway prediction. AR active components were obtained through TCMSP platform and literature search. The related targets of AR and PCOS were obtained through the disease and Swiss Target Prediction databases. An "active ingredient-target" network map was constructed using Cytoscape software, and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis was conducted through Hiplot. Finally, Auto Dock Tools software was used to conduct molecular docking between active ingredients and core targets. The main bioactive ingredients of AR in the treatment of PCOS are acteoside, baicalin, caffeic acid, cistanoside F, geniposide, etc. These ingredients involve 10 core targets, such as SRC, HSP90AA1, STAT3, MAPK1, and JUN. The effect of AR on anti-PCOS mainly involves the AGE-RAGE signaling pathway, Relaxin signaling pathway, TNF signaling pathway, and ErbB signaling pathway. Molecular docking results showed that the main active components and key targets of AR could be stably combined. AR can improve hyperandrogen status, regulate glucose homeostasis, and correct lipid metabolism and other physiological processes through multi-component, multi-target, and multi-pathway. Thus, it could play a significant role in PCOS treatment. The results of our study provide a scientific foundation for basic research and clinical applications of AR for the treatment of PCOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659600PMC
http://dx.doi.org/10.1097/MD.0000000000036118DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
signaling pathway
16
network pharmacology
8
pharmacology molecular
8
polycystic ovary
8
ovary syndrome
8
radix rehmanniae
8
active components
8
core targets
8
treatment pcos
8

Similar Publications

Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.

View Article and Find Full Text PDF

Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively.

View Article and Find Full Text PDF

From the leaves of , fourteen compounds were isolated and identified: D-mannitol (), a mixture of β-sitosterol () and stigmasterol (), α-amyrin (), betulin (), lupeol (), lupenone (), betulinic acid (), taraxerol (), 3β-(E)-coumaroyltaraxerol (), 3β-(Z)-coumaroyltaraxerol (), ursolic acid (), stigmasterol 3-O-β-D-glucoside (), and β-sitosterol 3-O-β-D-glucoside (). These compounds were analysed through NMR spectroscopy (both 1D and 2D) and by comparing them to previously published data. Compounds , , , and - have been identified from this species for the first time.

View Article and Find Full Text PDF

Background: Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors.

Methods: Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity.

View Article and Find Full Text PDF

The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!