Post-traumatic stress disorder (PTSD) is an independent risk factor for developing heart failure; however, the underlying cardiac mechanisms are still elusive. This study aims to evaluate the real-time effects of experimentally induced PTSD symptom activation on various cardiac contractility and autonomic measures. We recorded synchronized electrocardiogram and impedance cardiogram from 137 male veterans (17 PTSD, 120 non-PTSD; 48 twin pairs, 41 unpaired singles) during a laboratory-based traumatic reminder stressor. To identify the parameters describing the cardiac mechanisms by which trauma reminders can create stress on the heart, we utilized a feature selection mechanism along with a random forest classifier distinguishing PTSD and non-PTSD. We extracted 99 parameters, including 76 biosignal-based and 23 sociodemographic, medical history, and psychiatric diagnosis features. A subject/twin-wise stratified nested cross-validation procedure was used for parameter tuning and model assessment to identify the important parameters. The identified parameters included biomarkers such as pre-ejection period, acceleration index, velocity index, Heather index, and several physiology-agnostic features. These identified parameters during trauma recall suggested a combination of increased sympathetic nervous system (SNS) activity and deteriorated cardiac contractility that may increase the heart failure risk for PTSD. This indicates that the PTSD symptom activation associates with real-time reductions in several cardiac contractility measures despite SNS activation. This finding may be useful in future cardiac prevention efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939951PMC
http://dx.doi.org/10.1111/psyp.14488DOI Listing

Publication Analysis

Top Keywords

cardiac mechanisms
12
cardiac contractility
12
impedance cardiogram
8
post-traumatic stress
8
stress disorder
8
trauma recall
8
heart failure
8
ptsd symptom
8
symptom activation
8
identify parameters
8

Similar Publications

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Gene therapy for sickle cell disease: recent advances, clinical trials and future directions.

Cytotherapy

December 2024

Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability.

View Article and Find Full Text PDF

In 1924, the Dutch physiologist Willem Einthoven received the Nobel Prize in Physiology or Medicine for his discovery of the mechanism of the electrocardiogram (ECG). Anno 2024, the ECG is commonly used as a diagnostic tool in cardiology. In the paper 'Le Télécardiogramme', Einthoven described the first recording of the now most common cardiac arrhythmia: atrial fibrillation (AF).

View Article and Find Full Text PDF

Background: Congenital heart diseases are among the most common birth defects, significantly impacting infant health. Recent evidence suggests that exposure to endocrine-disrupting chemicals may contribute to the incidence of congenital heart diseases. This study systematically reviews and analyzes the association between maternal endocrine-disrupting chemicals exposure and congenital heart diseases.

View Article and Find Full Text PDF

Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Development.

Metabolites

December 2024

The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.

General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!