Objectives: Molecular cues linked to heartwood formation open new (complementary) perspectives to genetic breeding programs of Douglas-fir, a tree species largely cultivated in Europe for the natural durability and civil engineering properties of its wood.

Data Description: RNAs from a single genotype of Douglas-fir, extracted from three distinct wood zones (outer sapwood, inner sapwood and transition zone) at four vegetative seasons to generate an extensive RNA-seq dataset used to apprehend the in-wood dynamic and seasonality of heartwood formation in this hardwood model species. Previously published data collected on somatic embryos of the same genotype could be merged with the present dataset to upgrade grade the Douglas-fir reference transcriptome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662504PMC
http://dx.doi.org/10.1186/s12863-023-01172-zDOI Listing

Publication Analysis

Top Keywords

heartwood formation
12
transcriptomic monitoring
4
douglas-fir
4
monitoring douglas-fir
4
douglas-fir heartwood
4
formation objectives
4
objectives molecular
4
molecular cues
4
cues linked
4
linked heartwood
4

Similar Publications

Advances in the Study of Heartwood Formation in Trees.

Life (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.

Heartwood, serving as the central constituent of the xylem, plays a crucial role in the growth, development, and resilience of trees. The process of heartwood formation constitutes a complex biological phenomenon influenced by various factors. A thorough examination of the mechanisms underpinning heartwood formation not only enhances our understanding of the growth and developmental paradigms regulating trees but also provides essential theoretical support and practical insights for the timber industry, forestry management, and ecological conservation.

View Article and Find Full Text PDF

Phosphorus (P) and potassium (K) play important roles in plant metabolism and hydraulic balance, respectively, while calcium (Ca) and magnesium (Mg) are important components of cell walls. Although significant amounts of these nutrients are found in wood, relatively little is known on how the wood concentrations of these nutrients are related to other wood traits, or on the factors driving the resorption of these nutrients within stems. We measured wood nutrient (i.

View Article and Find Full Text PDF

Research on using Aquilaria sinensis callus to evaluate the agarwood-inducing potential of fungi.

PLoS One

December 2024

Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China.

Agarwood is a precious resinous heartwood highly valued for its cultural, religious, and medicinal significance. With the increasing market demand, natural agarwood resources are rapidly depleting, making the development of effective artificial induction methods for agarwood highly significant. This study aims to explore the feasibility of using callus tissue to assess the ability of fungi to induce agarwood formation.

View Article and Find Full Text PDF

Thiamine dilauryl sulphate (TDS) exerts a bacteriostatic effect against Gram-positive bacteria and is used as a food additive. The heartwood extract of the Indian kino tree (Pterocarpus marsupium), a medicinal tree native to India, shows weak antimicrobial effects against bacteria and superficial dermatophyte-infective fungi. Herein, we report that the combination of TDS and P.

View Article and Find Full Text PDF

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

March 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!