Background: Low birth weight (LBW) has been linked to infant mortality. Predicting LBW is a valuable preventative tool and predictor of newborn health risks. The current study employed a machine learning model to predict LBW.
Methods: This study implemented predictive LBW models based on the data obtained from the "Iranian Maternal and Neonatal Network (IMaN Net)" from January 2020 to January 2022. Women with singleton pregnancies above the gestational age of 24 weeks were included. Exclusion criteria included multiple pregnancies and fetal anomalies. A predictive model was built using eight statistical learning models (logistic regression, decision tree classification, random forest classification, deep learning feedforward, extreme gradient boost model, light gradient boost model, support vector machine, and permutation feature classification with k-nearest neighbors). Expert opinion and prior observational cohorts were used to select candidate LBW predictors for all models. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F1 score were measured to evaluate their diagnostic performance.
Results: We found 1280 women with a recorded LBW out of 8853 deliveries, for a frequency of 14.5%. Deep learning (AUROC: 0.86), random forest classification (AUROC: 0.79), and extreme gradient boost classification (AUROC: 0.79) all have higher AUROC and perform better than others. When the other performance parameters of the models mentioned above with higher AUROC were compared, the extreme gradient boost model was the best model to predict LBW with an accuracy of 0.79, precision of 0.87, recall of 0.69, and F1 score of 0.77. According to the feature importance rank, gestational age and prior history of LBW were the top critical predictors.
Conclusions: Although this study found that the extreme gradient boost model performed well in predicting LBW, more research is needed to make a better conclusion on the performance of ML models in predicting LBW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662167 | PMC |
http://dx.doi.org/10.1186/s12884-023-06128-w | DOI Listing |
Vet Med Sci
January 2025
Andırın Vocational School, Department of Computer Technologies, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye.
Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.
View Article and Find Full Text PDFChemSusChem
January 2025
North China Electric Power University, Changping district, NO.2, Beinong Road, CHINA.
Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
Foliage plants have strict requirements for their growing environment, and timely and accurate soil temperature forecasts are crucial for their growth and health. Soil temperature exhibits by its non-linear variations, time lags, and coupling with multiple variables, making precise short-term multi-step forecasts challenging. To address this issue, this study proposes a multivariate forecasting method suitable for soil temperature forecasting.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Pediatrics, School of Medicine, Ekbatan Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.
Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!