AI Article Synopsis

  • Auricularia auricula (a type of mushroom) can be fermented to enhance its nutritional benefits and bioactive components.
  • Standard strains of Lactobacillus were used for fermentation, leading to increased levels of polyphenols and flavonoids in the final product.
  • Consumption of the fermented product not only supported gut health by boosting beneficial bacteria but also improved antioxidant capacity without harming overall health in mice.

Article Abstract

Background: Auricularia auricula is rich in bioactive components, and microbial fermentation can further dramatically increase its content and bioavailability. However, there are few studies on the relationship between fermented A. auricula pulp (FAAP) and gut microbiota. In this study, standard strains Lactobacillus plantarum 21801 and 21805 purchased from the China Center of Industrial Culture Collection were used to ferment A. auricula pulp at a ratio of 2:1, with an inoculum of 5%, a fermentation temperature of 31 °C, and a fermentation time of 22 h. The nutritional properties, aroma, and color of FAAP and their effects on the body characteristics of mice and the structure and abundance of gut microbiota are discussed.

Results: The results showed that, compared with A. auricula pulp, FAAP significantly increased the nutritional properties while maintaining favorable sensory quality and flavor profiles. Among them, the content of total polyphenols and total flavonoids reached 22.04 μg mL and 20.56 μg mL respectively, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid free-radical scavenging rate increased to 73.21%. The consumption of FAAP had no negative effects on weight or liver and kidney function in mice and dramatically enhanced the antioxidant capacity in the liver and serum. The production of short-chain fatty acids in the gut was promoted, the relative abundance of beneficial bacteria (Lactobacillus, Bifidobacterium, norank_f__Muribaculaceae and unclassified_f__Lachnospiraceae) increased, and the growth of some pathogenic bacteria (Helicobacter, Mucispirillum, and Alloprevotella) was inhibited.

Conclusion: These findings demonstrate that FAAP is rich in nutrients and has unique functional properties that promote host health and regulate the gut microbiota. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13150DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
nutritional properties
12
a auricula pulp
12
auricularia auricula
8
pulp faap
8
gut
5
faap
5
investigation nutritional
4
properties
4
properties auricularia
4

Similar Publications

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.

View Article and Find Full Text PDF

Attraction of Bactrocera cucurbitae (Coquillett) to selected gut microbiota supernatants: implications for pest control.

Pest Manag Sci

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!