A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing large real-world data analysis with parquet files in R: A step-by-step tutorial. | LitMetric

Optimizing large real-world data analysis with parquet files in R: A step-by-step tutorial.

Pharmacoepidemiol Drug Saf

Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.

Published: March 2024

Purpose: The use of open-source programming languages can facilitate open science practices in real-world evidence (RWE) studies. Real-world studies often rely on using big data, which makes using such languages complicated. We demonstrate an efficient approach that enables RWE researchers to use R to undertake RWE analysis tasks from cohort building to reporting.

Methods: Using the Merative Marketscan data (2017-2019), we developed an R function to transform the data into parquet format to be used in R. Then, we compared the differences in data size before and after transformation. We compared the performance of the transformed data in R to the original data in terms of numerical consistency and running times required to complete simple exploratory tasks. To show how the transformed databases can be used in practice, we conducted a simplified replication of an active comparator new user study from the literature. All codes are available on GitHub.

Results: Our approach exhibited high efficiency in data storage, as evidenced by the converted data size, which ranged from 10% to 43% of that of the original data files. The runtime of the exploratory tasks in R generally outperformed that of the original data with SAS. We showed, through example, how the converted data can be efficiently used to implement an RWE study.

Conclusion: We demonstrate a free and efficient solution to facilitate the use of open-source programming languages with big real-world databases, which can facilitate the adoption of open science practices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pds.5728DOI Listing

Publication Analysis

Top Keywords

data
12
original data
12
open-source programming
8
programming languages
8
open science
8
science practices
8
data size
8
exploratory tasks
8
converted data
8
optimizing large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!