Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
1D grain boundaries in transition metal dichalcogenides (TMDs) are ideal for investigating the collective electron behavior in confined systems. However, clear identification of atomic structures at the grain boundaries, as well as precise characterization of the electronic ground states, have largely been elusive. Here, direct evidence for the confined electronic states and the charge density modulations at mirror twin boundaries (MTBs) of monolayer NbSe, a representative charge-density-wave (CDW) metal, is provided. The scanning tunneling microscopy (STM) measurements, accompanied by the first-principles calculations, reveal that there are two types of MTBs in monolayer NbSe, both of which exhibit band bending effect and 1D boundary states. Moreover, the intrinsic CDW signatures of monolayer NbSe are dramatically suppressed as approaching an isolated MTB but can be either enhanced or suppressed in the MTB-constituted confined wedges. Such a phenomenon can be well explained by the MTB-CDW interference interactions. The results reveal the underlying physics of the confined electrons at MTBs of CDW metals, paving the way for the grain boundary engineering of the functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462295 | PMC |
http://dx.doi.org/10.1002/advs.202306171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!