Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448365PMC
http://dx.doi.org/10.1111/gtc.13080DOI Listing

Publication Analysis

Top Keywords

toxoplasma gondii
8
low virulent
8
virulent type
8
type gondii
8
irgb6
5
structural basis
4
basis irgb6
4
irgb6 inactivation
4
inactivation toxoplasma
4
gondii
4

Similar Publications

Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of .

Front Immunol

December 2024

Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by infection.

Front Microbiol

December 2024

Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China.

is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia.

View Article and Find Full Text PDF

Global prevalence of lagomorpha coccidiosis from 1951 to 2024: A systematic review and meta-analysis.

Res Vet Sci

December 2024

School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, China. Electronic address:

The global prevalence of coccidia infection in lagomorphs and potential risk factors were investigated through a meta-analysis of 149 studies published between 1951 and 2024. The pooled prevalence of Eimeriidae, Sarcocystidae and Cryptosporidiidae was found to be 66.0 %, 8.

View Article and Find Full Text PDF

A Novel Nuclear Protein Complex Controlling the Expression of Developmentally Regulated Genes in Toxoplasma Gondii.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

Toxoplasma gondii is a ubiquitous protozoan parasite with a complex life cycle containing multiple developmental stages. The parasites have distinct gene expression patterns at different stages to enable stage specific life activities, but the underlying regulatory mechanisms are largely unknown. In this study, a nuclear complex is identified that controls the expression of developmentally regulated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!