In recent years, extensive experimental research on hydrothermal carbonization (HTC) of sewage sludge has been performed, to study the effects of process conditions on hydrochar characteristics and nutrient, carbon, and energy recovery from sewage sludge. To promote the implementation of HTC, this study assessed HTC (230 °C, 30 min) integration into an advanced centralized biogas plant by analyzing its theoretical effects on the fates of sewage sludge solids, nitrogen, phosphorus, and carbon. The study used the mass and nutrient flows and concentrations obtained from laboratory studies, and the studied biogas plant had an original layout that employed hygienization. HTC integration decreased the solid product volume by up to 56 % and, increased the recovery of ammonium in ammonia water by 33 % and methane by 1.4 %, while increasing the biogas plant energy demand by 4 %. The changes in the nutrient and solids flows and their recovery potentials show the need to consider the rearrangements of the liquid and gas flows in the biogas plant and the re-dimensioning of stripping process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.11.012DOI Listing

Publication Analysis

Top Keywords

biogas plant
20
sewage sludge
16
hydrothermal carbonization
8
carbon energy
8
energy recovery
8
centralized biogas
8
biogas
5
plant
5
implementation hydrothermal
4
carbonization nutrients
4

Similar Publications

Exploring the catalytic hydrothermal liquefaction of Namibian encroacher bush.

Sci Rep

January 2025

Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.

An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).

View Article and Find Full Text PDF

The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops play a crucial role across sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops.

View Article and Find Full Text PDF

Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.

View Article and Find Full Text PDF

Natural pigments and biogas recovery from cyanobacteria grown in treated wastewater. Fate of organic microcontaminants.

Water Res

December 2024

GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:

Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.

View Article and Find Full Text PDF

Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.

Adv Biochem Eng Biotechnol

December 2024

Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.

The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!