Bexarotene drives the self-renewing proliferation of adult neural stem cells, promotes neuron-glial fate shift, and regulates late neuronal differentiation.

J Neurochem

Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil.

Published: August 2024

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15998DOI Listing

Publication Analysis

Top Keywords

fate shift
12
self-renewing proliferation
8
adult neural
8
neural stem
8
stem cells
8
neuronal differentiation
8
rxr agonist
8
rxr activation
8
adult
5
cell
5

Similar Publications

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

Ultra-Fast Warming Procedure of Vitrified Blastocysts Results in Maintained Embryology and Clinical Outcomes.

Reprod Sci

January 2025

Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France.

Vitrification has revolutionized embryo cryopreservation, but represents a significant workload in the IVF lab. We evaluated here an ultrafast blastocyst warming procedure in order to improve workflow while maintaining clinical outcome. We first evaluated the expression of main markers of lineage specification in a subset of blastocysts donated to research warmed with ultrafast protocol.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts.

View Article and Find Full Text PDF

SLC35A2 loss of function variants affect glycomic signatures, neuronal fate, and network dynamics.

bioRxiv

December 2024

Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.

encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic variants have been identified in congenital disorders of glycosylation and somatic variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive.

View Article and Find Full Text PDF

GEMLI: Gene Expression Memory-Based Lineage Inference from Single-Cell RNA-Sequencing Datasets.

Methods Mol Biol

January 2025

Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.

Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!