Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper addresses a large class of nonsmooth nonconvex stochastic DC (difference-of-convex functions) programs where endogenous uncertainty is involved and i.i.d. (independent and identically distributed) samples are not available. Instead, we assume that it is only possible to access Markov chains whose sequences of distributions converge to the target distributions. This setting is legitimate as Markovian noise arises in many contexts including Bayesian inference, reinforcement learning, and stochastic optimization in high-dimensional or combinatorial spaces. We then design a stochastic algorithm named Markov chain stochastic DCA (MCSDCA) based on DCA (DC algorithm) - a well-known method for nonconvex optimization. We establish the convergence analysis in both asymptotic and nonasymptotic senses. The MCSDCA is then applied to deep learning via PDEs (partial differential equations) regularization, where two realizations of MCSDCA are constructed, namely MCSDCA-odLD and MCSDCA-udLD, based on overdamped and underdamped Langevin dynamics, respectively. Numerical experiments on time series prediction and image classification problems with a variety of neural network topologies show the merits of the proposed methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.11.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!