A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Markov chain stochastic DCA and applications in deep learning with PDEs regularization. | LitMetric

Markov chain stochastic DCA and applications in deep learning with PDEs regularization.

Neural Netw

Université de Lorraine, LGIPM, Metz, 57000, France; Institut Universitaire de France (IUF), Paris, France. Electronic address:

Published: February 2024

This paper addresses a large class of nonsmooth nonconvex stochastic DC (difference-of-convex functions) programs where endogenous uncertainty is involved and i.i.d. (independent and identically distributed) samples are not available. Instead, we assume that it is only possible to access Markov chains whose sequences of distributions converge to the target distributions. This setting is legitimate as Markovian noise arises in many contexts including Bayesian inference, reinforcement learning, and stochastic optimization in high-dimensional or combinatorial spaces. We then design a stochastic algorithm named Markov chain stochastic DCA (MCSDCA) based on DCA (DC algorithm) - a well-known method for nonconvex optimization. We establish the convergence analysis in both asymptotic and nonasymptotic senses. The MCSDCA is then applied to deep learning via PDEs (partial differential equations) regularization, where two realizations of MCSDCA are constructed, namely MCSDCA-odLD and MCSDCA-udLD, based on overdamped and underdamped Langevin dynamics, respectively. Numerical experiments on time series prediction and image classification problems with a variety of neural network topologies show the merits of the proposed methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.11.032DOI Listing

Publication Analysis

Top Keywords

markov chain
8
chain stochastic
8
stochastic dca
8
deep learning
8
learning pdes
8
stochastic
5
dca applications
4
applications deep
4
pdes regularization
4
regularization paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!