Although many studies have reported the negative effects of microplastics on aquatic organisms, most research is focused on individual scales. Individual studies highlight harm mechanisms, but understanding broader ecological effects necessitates evidence from multiscale perspectives, particularly those based on interspecific interactions. Therefore, in this study, we investigated the impacts of different microplastic concentrations (0, 0.4, 2, and 10 mg/L) on individual characteristics (physiology, behavior, and grazing rate) and population dynamics of two cladoceran species Daphnia magna and Scapholeberis kingi, and their interrelationships within communities in the absence and presence of predators (larvae of Agriocnemis pygmaea). We used 32-38 μm polyethylene microplastics; these particles were detected in the guts of D. magna, especially at higher concentrations, but were not found in S. kingi. Consequently, with increasing microplastic concentrations, the grazing and reproductive capacity of D. magna diminished, weakening their dominance in the coexistence system without damselfly larvae. Additionally, as microplastic concentration increased, D. magna faced greater oxidative damage and a reduction in mobility, making this species more susceptible to predation by damselfly larvae and less dominant in the predator-inhabited coexistence system. This study reveals the mechanism by which asymmetric impacts of microplastics on individual traits altered interspecific competition between zooplankton species, thereby illuminating the role of microplastics in altering zooplankton communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120877 | DOI Listing |
Resource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (), Little Egrets () and Squacco Herons ().
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China. Electronic address:
The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.
View Article and Find Full Text PDFEnviron Int
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China. Electronic address:
Identifying and differentiating human activities is crucial for effectively preventing the threats posed by environmental pollution to aquatic ecosystems and human health. Machine learning (ML) is a powerful analytical tool for tracking human impacts on river ecosystems based on high-through datasets. This study employed an ML framework and 16S rRNA sequencing data to reveal microbial dynamics and trace human activities across China.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA.
Mast seeding, the synchronous and highly variable production of seed crops by perennial plants, is a population-level phenomenon and has cascading effects in ecosystems. Mast seeding studies are typically conducted at the population/species level. Much less is known about synchrony in mast seeding between species because the necessary long-term data are rarely available.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
Ecosystem models are often used to predict the consequences of management interventions in applied ecology and conservation. These models are often high-dimensional and nonlinear, yet limited data are available to calibrate or validate them. Consequently, their utility as decision-support tools is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!