Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modelling microalgae-bacteria in wastewater treatment systems has gained significant attention in the last few years. In this study, we present an enhanced version of the ABACO model, named ABACO-2, which demonstrates improved accuracy through validation in outdoor pilot-scale systems. ABACO-2 enables the comprehensive characterization of microalgae-bacteria consortia dynamics, allowing to predict the biomass concentration (microalgae, heterotrophic bacteria, and nitrifying bacteria) and nutrient evolution. The updated version of the model incorporates new equations for nutrient coefficient yields, oxygen mass balance, and microorganism cellular decay, while significantly reducing the number of calibrated parameters, simplifying the parameter identification. Calibration and validation were performed using data from a 80 m raceway reactor operated in a semicontinuous mode over an extensive period (May to November, total of 206 days) at a fixed dilution rate of 0.2 day (corresponding to 5 days of hydraulic retention time), where untreated urban wastewater was used as culture medium. ABACO-2 exhibited robustness, accurately forecasting biomass production, population dynamics, nutrient recovery, and prevailing culture conditions across a wide range of environmental and water composition conditions. Mathematical models are essential instruments for the industrial development and optimization of microalgae-related wastewater treatment processes, thereby contributing to the sustainability of the wastewater treatment industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120837 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!