Tetanus is a disease associated with significant morbidity and mortality. Heart rate variability (HRV) is an objective clinical marker with potential value in tetanus. This study aimed to investigate the use of wearable devices to collect HRV data and the relationship between HRV and tetanus severity. Data were collected from 110 patients admitted to the intensive care unit in a tertiary hospital in Vietnam. HRV indices were calculated from 5-minute segments of 24-hour electrocardiogram recordings collected using wearable devices. HRV was found to be inversely related to disease severity. The standard deviation of NN intervals and interquartile range of RR intervals (IRRR) were significantly associated with the presence of muscle spasms; low frequency (LF) and high frequency (HF) indices were significantly associated with severe respiratory compromise; and the standard deviation of differences between adjacent NN intervals, root mean square of successive differences between normal heartbeats, LF to HF ratio, total frequency power, and IRRR, were significantly associated with autonomic nervous system dysfunction. The findings support the potential value of HRV as a marker for tetanus severity, identifying specific indices associated with clinical severity thresholds. Data were recorded using wearable devices, demonstrating this approach in resource-limited settings where most tetanus occurs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793034 | PMC |
http://dx.doi.org/10.4269/ajtmh.23-0531 | DOI Listing |
Sci Rep
December 2024
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Surgical Innovation and Engineering, Cedars Sinai Health System, Los Angeles, 90048, USA.
Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India. Electronic address:
Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.
View Article and Find Full Text PDFMaturitas
December 2024
Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom. Electronic address:
Objectives: To evaluate the impact of wearable devices when associated with usual care on the incidence of major adverse cardiovascular events (MACE) in patients with ischemic heart disease compared with usual care alone.
Methods: Randomised clinical trials with patients aged 18 years and above with ischemic heart disease, using wearable devices and assessing at least one of the primary outcomes (myocardial infarction, stroke, cardiovascular mortality, or major adverse cardiovascular events) or secondary outcomes (all-cause mortality, hospitalisation, all arrhythmias, heart failure, unstable angina or revascularisation procedures) were included. MEDLINE, EMBASE, Cochrane Library, CINHAL, INAHTA and the Web of Science Core Collection were searched in April 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!