Quantitative analysis of the UDP-glucuronosyltransferase transcriptome in human tissues.

Pharmacol Res Perspect

Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA.

Published: December 2023

UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that play important roles in the detoxification of endogenous and exogenous substrates. The 22 human UGTs belong to four families (UGT1, UGT2, UGT3, and UGT8) and differ in their expression, substrate specificity, UDP-sugar preference, and physiological functions. Differential expression/activity of the UGTs contributes to interperson variability in drug responses and toxicity, hormone homeostasis, and disease/cancer risks. However, in normal tissues, the tissue-specific expression profiles and transcriptional regulation of the UGTs are still not fully understood. In this study, we comprehensively analyzed the transcriptome of 22 UGTs in 54 human tissues/regions using RNAseq data from GTEx. We then validated the findings in the liver and small intestine samples using real-time PCR. Our results showed large interindividual variability across tissues in the expression of each UGT and the overall composition of UGT pools, consisting of different UGTs and their splice isoforms. Our results also revealed coexpression of the UGTs, Cytochrome P450s, and many transcription factors in the liver, suggesting potential coregulation or functional coordination. Our results provide the groundwork for future studies to detail further the regulation of the expression and activity of the UGTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659769PMC
http://dx.doi.org/10.1002/prp2.1154DOI Listing

Publication Analysis

Top Keywords

ugts
8
quantitative analysis
4
analysis udp-glucuronosyltransferase
4
udp-glucuronosyltransferase transcriptome
4
transcriptome human
4
human tissues
4
tissues udp-glucuronosyltransferases
4
udp-glucuronosyltransferases ugts
4
ugts phase
4
phase drug
4

Similar Publications

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Exploring the adaptation mechanism of Spodoptera litura to xanthotoxin: Insights from transcriptional responses and CncC signaling pathway-mediated UGT detoxification.

Insect Biochem Mol Biol

January 2025

Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

During the long-term interaction between plants and phytophagous insects, plants generate diverse plant secondary metabolites (PSMs) to defend against insects, whereas insects persistently cause harm to plants by detoxifying PSMs. Xanthotoxin is an insect-resistant PSM that is widely found in plants. However, the understanding of detoxification mechanism of xanthotoxin in insects is still limited at present.

View Article and Find Full Text PDF

Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.

View Article and Find Full Text PDF

Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.

Physiol Plant

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.

View Article and Find Full Text PDF

Discovery and mechanistic exploration of promiscuous xylosyltransferase based on protein engineering.

Int J Biol Macromol

January 2025

National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.

Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!