The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1.

Proc Natl Acad Sci U S A

Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.

Published: November 2023

The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α. HIV-1 M can escape human (hu) TRIM5α restriction by binding cyclophilin A (CYPA, also known as PPIA, peptidylprolyl isomerase A) to the so-called CYPA-binding loop of its capsid protein. How non-M HIV-1s interact with huTRIM5α is ill-defined. By testing full-length reporter viruses (Δ ) of HIV-1 N, O, P, and SIVgor (simian IV of gorillas), we found that in contrast to HIV-1 M, the nonpandemic HIVs and SIVgor showed restriction by huTRIM5α. Work to identify capsid residues that mediate susceptibility to huTRIM5α revealed that residue 88 in the capsid CYPA-binding loop was important for such differences. There, HIV-1 M uses alanine to resist, while non-M HIV-1s have either valine or methionine, which avail them for huTRIM5α. Capsid residue 88 determines the sensitivity to TRIM5α in an unknown way. Molecular simulations indicated that capsid residue 88 can affect -to- isomerization patterns on the capsids of the viruses we tested. These differential CYPA usages by pandemic and nonpandemic HIV-1 suggest that the enzymatic activity of CYPA on the viral core might be important for its protective function against huTRIM5α.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691330PMC
http://dx.doi.org/10.1073/pnas.2306374120DOI Listing

Publication Analysis

Top Keywords

loop capsid
8
human trim5α
8
nonpandemic hiv-1
8
cypa-binding loop
8
non-m hiv-1s
8
capsid residue
8
hiv-1
7
capsid
6
hutrim5α
5
cyclophilin a-binding
4

Similar Publications

Rational design of a triple-type HPV53/56/66 vaccine with one preferable base particle incorporating two identified immunodominant sites.

J Nanobiotechnology

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Discipline of Intelligent Instrument and Equipment, Department of Experimental Medicine, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China.

The numerous high-risk carcinogenic types of human papillomavirus (HR-HPV) that lack vaccine protection underscore the urgent need to develop broader-spectrum HPV vaccines. This study addresses this need by focusing on HR-HPV types 53, 56, and 66, which are not currently targeted by existing vaccines. It introduces an effective method for their soluble expression, as well as that of their mutants, within an Escherichia coli expression system.

View Article and Find Full Text PDF

Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles.

Vaccine

January 2025

Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:

The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.

View Article and Find Full Text PDF

Bioinspired synthesis of virus-like particle-templated thin silica-layered nanocages with enhanced biocompatibility and cellular uptake as drug delivery carriers.

Colloids Surf B Biointerfaces

March 2025

Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea; Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:

The bioinspired synthesis of virus-like silica nanoparticles in biomedical applications makes it possible to utilize the cellular delivery capabilities of viruses while minimizing the cytotoxicity of inorganic silica. In this study, we developed a diatom-inspired method for synthesizing silica-layered nanocages utilizing R5 peptide-functionalized virus-like particles (VLPs). R5 peptides were genetically inserted into the F-G loop of human papillomavirus 16 L1 proteins (HPV16 L1-R5).

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are pivotal in regulating cellular functions and life processes, making them promising therapeutic targets in modern medicine. Despite their potential, developing PPI inhibitors poses significant challenges due to their large and shallow interfaces that complicate ligand binding. This study focuses on mimicking peptide loops as a strategy for PPI inhibition, utilizing synthetic peptide loops for replicating critical binding regions.

View Article and Find Full Text PDF

Identification of a novel neutralization epitope in rhesus AAVs.

Mol Ther Methods Clin Dev

December 2024

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

Adeno-associated viruses (AAVs) are popular gene therapy delivery vectors, but their application can be limited by anti-vector immunity. Both preexisting neutralizing antibodies (NAbs) and post-administration NAbs can limit transgene expression and reduce the clinical utility of AAVs. The development of novel AAVs will advance our understanding of AAV immunity and may also have practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!