Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cooking oil fumes are an intricate and dynamic mixture containing a variety of poisonous and hazardous substances, and their real-time study remains challenging. Based on tunable synchrotron radiation photoionization mass spectrometry (SR-PIMS), isomeric/isobaric compounds in the gaseous oil fumes from oleic acid thermal oxidation were determined in real time and distinguished by photoionization efficiency (PIE) curve simulation combined with multiple linear regression (MLR) analysis. A series of common carcinogens such as formaldehyde, acetaldehyde, acrolein, and several unreported chemicals including diethyl ether and formylcyclohexane were successfully characterized. Moreover, time-resolved profiles of certain components in gaseous oil fumes were monitored for 55 h. Distinct evolutionary processes were observed, indicating the consumption and formation of parent molecules, intermediates, and final products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.3c00259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!