Shepherin I is a glycine- and histidine-rich antimicrobial peptide from the root of a shepherd's purse, whose antimicrobial activity was suggested to be enhanced by the presence of Zn(II) ions. We describe Zn(II) and Cu(II) complexes of this peptide, aiming to understand the correlation between their metal binding mode, structure, morphology, and biological activity. We observe a logical sequence of phenomena, each of which is the result of the previous one: (i) Zn(II) coordinates to shepherin I, (ii) causes a structural change, which, in turn, (iii) results in fibril formation. Eventually, this chain of structural changes has a (iv) biological consequence: The shepherin I-Zn(II) fibrils are highly antifungal. What is of particular interest, both fibril formation and strong anticandidal activity are only observed for the shepherin I-Zn(II) complex, linking its structural rearrangement that occurs after metal binding with its morphology and biological activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698721 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c03409 | DOI Listing |
Heart Rhythm
January 2025
Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China. Electronic address:
JACC Cardiovasc Imaging
January 2025
National Amyloidosis Centre, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom.
Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Nuclear Medicine Central University Emergency Military Hospital "Dr Carol Davila", 10825 Bucharest, Romania.
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!